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The classification of dilatant flow types 
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Abstract The kinematic vorticity number $V has been used to classify the geometry of two-dimensional, 
non-dilatant flow as a function of flow vorticity. A similar kinematic dilatancy number M can be defined, which 
expresses flow geometry as a function of dilatancy rate. General two-dimensional flow geometry can be described 
in a simple, non-ambiguous way by just W" and M. Mohr circles for flow can be used to illustrate this classification 
method. 

INTRODUCTION 

THE fabric geometry in a deformed material depends in 
part on the geometry of the parent flow, i.e. on the shape 
of the velocity field during deformation. Definitions of 
flow geometry are therefore an essential part of studies 
on deformation in rocks (cf. Ramberg 1975, McKenzie 
1979, Freeman 1985, Bobyarchick 1986, Passchier 1986, 
1988a). Two-dimensional and 'plane-strain' flow types 
are most popular in geological modelling. In the absence 
of dilatation (here used to mean area-change in the 
plane of the flow), they can be satisfactorily described in 
terms of pure shear and simple shear components, or 
more exactly by a vorticity number (Truesdell 1954, 
Ramberg 1975, Means et al. 1980). A classification 
problem may appear with the introduction of dilatation 
into models of flow and progressive deformation. Figure 
l(a) illustrates progressive non-dilatant deformation by 
steady-state simple shear flow. Dilatant flow types such 
as those responsible for progressive deformation in Figs. 
l(b) & (c) are less easy to define. Clearly, some para- 
meters must be chosen to describe such flow geometries 
in an unambiguous way. The four-component velocity 
gradient tensor L gives a complete mathematical de- 
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Fig. 2. (a) The angular velocity ~b and stretching rate k of material 
lines in real space subject to non-dilatant two-dimensional flow as 
described by the velocity gradient tensor L can be plotted to produce 
(b) a Mohr circle for flow in Cartesian & - k space. &l and d~ are 
directions of maximum and minimum angular velocity; kl and k2 are 
directions of maximum and minimum stretching rate; closed circles are 
points representing co-ordinate axes in real space, constructed by 
plotting coefficients of L in pairs, as indicated. (c) Mohr circle for pure 

shear flow; (d) Mohr circle for simple shear flow. 

scription of flow and could serve this purpose. L, how- 
ever, contains information on the orientation of flow 
eigenvectors and on strain rate besides flow geometry. 
Two parameters are sufficient to describe flow geometry 
completely, as explained below. 

(c) 

Fig. 1. Three sequences of progressive deformation produced by 
different steady-state flow types: (a) non-dilatant simple shear; (b) & 

(c) dilatant flow types. 

DESCRIPTION OF FLOW 

Any material line in a plane subject to homogeneous 
non-dilatant flow has a specific angular velocity (~b) and 
stretching rate (~), depending on its orientation (Fig. 
2a). When values for an infinite number of differently 
oriented material lines are plotted as points in a Carte- 
sian tb - k space, they define a circle known as the Mohr 
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circle for flow (Fig. 2b) (Lister & Williams 1983, Pass- 
chier 1986, 1988b). The angle between material lines 
measured around this circle (as in any other Mohr circle) 
is twice the angle measured in real space. Maximum and 
minimum stretching rates, ka and e2, occur on ortho- 
gonal material lines, defined by a horizontal diagonal 
through the circle (Fig. 2b); maximum and minimum 
angular velocities, &a and &2, of material lines occur on 
orthogonal lines defined by a vertical diameter through 
the circle (Fig. 2b). 

A Mohr circle centred on the origin of the reference 
frame represents pure shear flow (pure shearing) (Fig. 
2c); a circle centred on the vertical axis and transecting 
the origin represents simple shear flow (simple shearing) 
(Fig. 2d). A classification of flow in the range between 
pure and simple shear should therefore be based on the 
ratio of the vertical position (cb) of the circle centre to the 
size of the circle radius. This ratio can be described as W, 
a kinematic vorticity number of flow (Truesdell 1954, 
Means et al. 1980, Passchier 1986): 

e[~ (]')1 q" (])2 _ d)l  "+- O)2 
- - -  - c o s  a ,  ( 1 )  
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where (&a + &z) is the flow vorticity and 

E1 - -  k 2 _ _  d~l - d)2 
r - ~ 2 (2) 

is the circle radius, a is the angle measured in geometric 
(real) space between Aa and A2, the directions of zero 
angular velocity (Fig. 3) (Ramberg 1975, Passchier 
1988a,b). For pure shear flow W = 0, and for dextral 
simple shear flow W = 1. 

If dilatancy occurs, flow can still be presented as a 
Mohr circle, but its centre will not lie on the vertical (d)) 
axis (proof in Appendix) (Fig. 2). If the centre lies to the 
left of the origin, the area of an object deforming by 
steady-state flow is progressively decreasing; if it lies to 
the right, it is progressively increasing. 

By analogy with W, it is possible to quantify the 
horizontal deviation of the Mohr circle by a kinematic 
dilatancy number sg, the ratio of the horizontal deviation 
of the circle centre and the circle radius; 

E 1 -- k 2 2 r  

where fl is the angle measured in geometric (real) space 
between Ba and B2, the directions of zero instantaneous 
stretching rate (also known as 'lines of no instantaneous 
longitudinal strain') (Fig. 3). A and B axes are not 
necessarily orthogonal. 

CLASSIFICATION OF DILATANT FLOW 

~0 
W =cos 13 

A2X,, ~ A !  "~ 

Fig. 3. The geometry of flow, or the orientat ion of the Mohr  circle 
with respect to its reference frame, can be expressed in terms of°W, the 
kinematic vorticity number ,  and s~, the kinematic dilatancy number.  
A1 and A 2 are directions of zero angular velocity; B1 and B2 are 

directions of zero stretching rate. 

- 1  < W <  1; B axes exist only if - 1  < ~  < 1. Three 
basic types of flow geometry can be distinguished, de- 
pending on the relative position of A and B axes. 

Type I: W 2 + g/2 < 1 

These flow types plot inside the circle of Fig. 4 and are 
characterized by two A and two B axes of opposite sign. 
Four types of instantaneous deformation of material 
lines are possible; dextrally rotating and extending; 
dextrally rotating and shortening; sinistrally rotating 
and extending; and sinistrally rotating and shortening 
lines. Most of the flow types responsible for natural 
deformation with small vorticity numbers and limited 
dilatancy plot in this category. Pure shear flow is a well- 
known example (Fig. 4d). 

Type H: W 2 + ~/2 = 1 

These flow types plot on the circle in Fig. 4. Two or 
three types of rotating lines exist, and one A and B axis 
coincide; i.e. there is one line which is neither rotating 
nor stretching. Flow types in natural shear zones with 
rigid wall rocks belong to this category. Simple shear 
flow without dilatation (Fig. 4a) is a well-known 
example. 

Type III: W 2 + s~ 2 > 1 

These flow types plot outside the circle in Fig. 4. A or 
B axes have the same sign and three or less types of 
rotating lines exist (Fig. 4e). Some flow types which 
either lack A axes (super-simple shear; De Paor 1983), 
or B axes (pure dilatation) belong to this category. 
These flow types are probably uncommon in natural 
deformation. 

It will be clear from Fig. 3 that the geometry of the 
Mohr diagram for flow, and therefore of two- 
dimensional flow itself, can be completely described by 
two parameters, W and ~ .  Figure 4 illustrates the full 
range of possible flow geometries. A axes exist only if 

D I S C U S S I O N  

In progressive deformation by a dextral simple shear 
flow without dilatation (Fig. la), one material line is 
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neither stretching nor rotating, while all other lines are 
rotating dextrally. If we take the presence of a non- 
rotating, non-stretching material line as a characteristic 
of simple shear deformation, the flow type responsible 
for progressive deformation in Fig. l(b) could be classi- 
fied as a simple shear flow with area-increase (McCaig 
1987, fig. 8). In this flow type, however, one group of 
material lines is rotating sinistrally. This is a character- 
istic of non-dilatant flow types between pure and simple 
shear; apparently, the addition of a dilatation com- 
ponent to simple shear changes the vorticity number as 
used here. The flow type responsible for progressive 
deformation in Fig. l(c) contains a non-rotating, non- 
stretching material line as for the flow types of Figs. l(a) 
& (b). Nevertheless, it would be classified by most 
geologists as a pure dilatation, or a pure shear flow with 
area-increase, rather than a flow type related to simple 
shear. 

Apparently, the flow types responsible for progress- 
ive deformation in Fig. 1 cannot satisfactory be classified 
with the available terminology. In the classification 
suggested here, they all belong to flow Type II (Figs. 4a- 
c), but have different vorticity and dilatancy numbers. In 
order to avoid confusion as outlined above, it may be 
advantageous to reserve the terms 'simple shear' and 
'pure shear' to non-dilatant flow types (Fig. 4; ~ = 0 
axis), and to use W and ~ values to give an exact, non- 
ambiguous description of flow geometry. Mohr dia- 
grams for flow can easily be constructed from W and ,~ 
values, and can be used to visualize the different flow 
types. Obviously, many alternative pairs of parameters 
could be used to classify two-dimensional flow geom- 
etry, but the method suggested here has the advantage 
that it combines the already familiar kinematic vorticity 
number with a similar parameter, and allows an easy link 
to Mohr constructions. 

Acknowledgements---Chris Talbot proposed use of the term 'kinema- 

tic dilatancy number' for the parameter ~ .  A review by Andy Bobyar- 
chick helped to improve the manuscript. 
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APPENDIX 

Proof for the statement that a Mohr circle for flow centred on the vertical 
reference axis ( d~-axis) represents non-dilatant flow 

Flow in two dimensions can be represented by the velocity gradient 
tensor: 
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The Mohr circle for flow (Fig. 2b) can be constructed from tensor 
coefficients by plotting (p, - u )  and (v, q) as Cartesian co-ordinates in 
the reference frame (Means 1983); the Mohr circle passes through 
these points and is centred on the diagonal connecting them (Means 
1983). This implies (Fig. 3), that the Mohr circle is centred on the 
vertical axis if p = - v. 

Integration of L gives the position gradient tensor for incremental 
deformation: 

f I p ' A t + I  q'At ) (A2) 
F i = L dt = ~ u.At v.At + 1 ' 

where At is the time over which the incremental deformation operates. 
If the determinant of F i = 1, i.e. if: 

(p.At + 1)(v.At + 1) -- qu.At 2 = 
pv.A~ + p.At + v.At + l -- qu.A~ = l (A3) 

there is no incremental area change. If At---~ 0, the equation (A3) 
reduces to 

p.At + v.At = 0, i.e. p = - v .  (A4) 

Consequently, a Mohr circle for non-dilatant flow is always centred on 
the vertical reference axis, and circles which are off-axis represent 
instantaneous area increase or decrease. 


